
Experimental and Theoretical Comparison of Photon-Counting
and Current Measurements of Light Intensity

R. Jones, C. J. Oliver, and E. R. Pike

The effect of gain variation on the integrated output-charge distribution of a photomultiplier tube is
investigated experimentally and shown to be a predictable function of the multiplier single-electron
response. Standardized or nonstandardized pulses recorded using either capacitive or digital storage
are considered. Theoretical values for the moment-generating functions and variances (noise powers)
of the charge distributions obtained in these four cases are given, and the role of these various distribu-
tions in determining the length of time required to achieve a given accuracy in a light-flux measurement
is discussed. The experimental measurements adequately confirm the theoretical predictions. The
work includes a critical discussion of the field of theoretical and experimental noise investigations in
photomultiplier tubes with regard to their relevance in the present state of technology.

Introduction

There are two important factors affecting the time
taken to achieve a desired accuracy when using a
photomultiplier to measure light flux. They are, first,
whether the detector is to be used directly as a current
source or whether the output is to be converted into a
standardized-pulse output from a discriminator. Sec-
ond, one needs to consider whether it is to be used with
storage, having its own internal time constant governing
integration time, (e.g., a microammeter, ratemeter, or
pen-recorder), or to be used with accumulating storage
in which no information is lost (e.g., a scalar or multi-
channel pulse-height analyzer). For the purposes of
this paper these storage techniques will be referred to as
capacitive and digital, respectively. The significance
of the choice between these different techniques is dis-
cussed from both experimental and theoretical view-
points. This work was stimulated by a recent paper
by Rolfe and Moore,' who draw experimental conclu-
sions that we find unacceptable with respect to the
merits of the various techniques.

In the original papers of Zworykin et al.2 (1936) and
Shockley and Pierce' (1938) expressions were derived
for the noise in the output charge q of an electron
multiplier as a function of its secondary-emission prop-
erties. They considered both Poisson2' 3 secondary-
emission statistics and generalized statistics giving a
different mean-square deviation. 3 Their experimental
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evidence for one-, two-, and three-stage tubes showed
good agreement with the theory. Unfortunately the
development of this device into practical photomulti-
plier tubes introduced various problems, in particular
different light- and dark-count pulse-height distribu-
tions P(q) and correlations between dark counts.
Much of the work in the literature devoted to the
achievement of the optimum performance of photo-
multiplier tubes has concentrated on these two de-
partures from ideality and has even ignored the effects
of the secondary-emission statistics described by the
original authors. Modern tubes, however, are avail-
able that have effectively the same distribution for
light and dark counts, even when cooled, and have
Poissonian dark-count statistics (eg, the ITT FW1304 5).
These are mainly tubes that have small photocathode
areas so that not only are the number of nonthermionic
dark pulses, caused by the Cerenkov radiation of cosmic
rays in the tube walls6' 7 and possibly disintegration of
4 0K, very low (e.g., -0.5/sec for the ITT FW130), but
the light piping effect is reduced also. This causes the
pulses that are observed to correspond only to single
photoelectrons,4 not to the large bunches that have
been observed by Young7 with large photocathode
tubes. (With an ITT FW118, having similar geometry
but with an S-1 rather than an S-20 photocathode,
Young7 also observed no dark pulses larger than those
corresponding to single photoelectrons.) Another fac-
tor is that for good tubes the low-pulse-height tails in
the P(q)'s are not now significant and are, to the extent
that they are observed, probably not due to the non-
thermionic effects of positive ions but to some electron-
optical effect.8' 9 Accordingly, the work of many
authors on the problem of low-light detection and the
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Table I. Bibliography of Original Theoretical Work on the
Factors Affecting the Integrated-Charge Fluctuations from
Photomultiplier Tubes Detecting Coherent

Thermal Lighta b
or Wideband

Capaci- Dark-
Detection Digital tive P(q)light d count
method storage storage P(q)dark statistics

Standardized
(photon S18c Taoi B62d Tl 6 8 d
counting) M58

Non- SP38e
standardized Present Present B62d Tl 6 8 d

(dc) paper paper
Shot-noise

power Y69 PG67f PG67d, Y69d

a B62, Baum2 4 ; M58, Mandel"2 ; PG67, Pao and Griffiths 3 ;
S18, Schottky'0 ; SP38, Shockley and Pierce3 ; Ta5l, Taylor 8;
T168, Tull 6 ; Y69, Young. 11

b The region enclosed by a double line is relevant to operation
of an ideal photomultiplier.

: Equivalent calculation.
d Dark-count limited operation.
I Variance only.
f Ignores effect of gain distribution.

comparison of photon counting with other techniques is
largely outdated for high-quality tubes, since the main
remaining source of noise introduced is the statistical
variation of gain in the multiplier.

When using a photomultiplier to measure light flux,
the detector output, consisting of a train of pulses of
varying heights corresponding to the detection of
photons, is stored in some fashion for an integration
time T. The over-all noise in signal is determined by
the variance of this integrated charge. Additional
noise results from the detector dark counts. Table I
is a bibliography of original work, so far as we can
establish, on the theoretical effect of various factors on
the integrated-charge fluctuations. Three basic types
of detection method are considered, namely, the use of
standardized output pulses (photon-counting), non-
standardized output pulses (dc techniques), and shot-
noise power measurement. Comparison of these tech-
niques for noise-in-signal limited operation shows that
the signal-to-noise power ratios in the three cases are
in the proportions 1 (Ref. 10): 1 + [Var(q)/q2 ] (Ref.
3): 1 + [Var(q2)/q22 j (Ref. 11), respectively, for either
storage technique. This shows that the shot-noise
power technique would be poorer than normal dc
operation, which, in turn, would be poorer than photon
counting under these circumstances. The results
given in italics in the table are the only ones relevant
to the best present-day tubes.

The effect of the photon-noise arising in detection of
coherent or broadband thermal light was analyzed by
Mandel,' 2 though an equivalent expression for shot
noise was derived long before by Schottky.' 0 This
simple theory was extended to allow for the multiplier
gain distribution by Shockley and Pierce,3 who derived
an expression for the variance of the integrated-charge
distribution. In the present paper, to be complete,

we present in an Appendix a derivation of the moment-
generating function of this distribution.

For a multiplier having different light- and dark-
count charge distributions, the shot-noise power
method could result in an improvement of the signal-
to-noise ratio (SNR) (Pao and Griffiths 3 ). Pao and
Griffiths's analysis, however, was incomplete since it
ignored the effect of the gain distribution and only con-
sidered the effect of different mean gains for light and
dark pulses. If the tube has correlations between
pulses it has been shown" that analog methods would
be badly affected, the shot-noise method being worse
than dc methods. Non-Poissonian dark-count statis-
tics, such as have been observed by Rodman and
Smith' 4 and Gadsden,'5 were included by Tull' 6 in his
analysis of the dc detection scheme. However, to the
extent that it is now possible to obtain detectors not
suffering from these nonidealities, it is only really
necessary to consider the relative merits of dc or photon-
counting detection with noise-in-signal limited opera-
tion.

The difference between digital and capacitive storage
is also an important consideration. There appears to
be some confusion in the literature between inverse
bandwidth and digital storage time; see, for example,
Alfano and Ockman,'7 who derive a greater SNR for de
detection than for photon counting. The theory of the
capacitive storage of standardized pulses, which is basi-
cally that of a ratemeter, was given by Taylor. 18 Again,
to be complete, we give a derivation, including the
effects of varying pulse height, in the Appendix.

Table II contains a bibliography of original work on
the experimental measurement of the properties con-

Table II. Bibliography of Original Experimental Work on the
Factors Affecting the Integrated-Charge Fluctuations from
Photomultiplier Tubes Detecting Coherent or Wideband

Thermal Lighta b

Capaci- Dark-
Detection Digital tive P(q)light 5- count
method storage storage P(q)dark statistics

Standardized FH65c A068, d

(photon MiIMHP 65c Present G65d RS63c, d
counting) JMP 65 paper OP68d

Non- ZMM36,
standardized Present ESG 52f NS68d
(dc) paper FJOP69

Shot-noise
power PG67d

a A068, Alfano and Ockman"; ESG52, Engstrom et al.'9;
FH65, Freed and Haus19 ; FJOP69, Foord et al.5; G65, Gadsden"6 ;
JMP65, Johnson et al.

21
; MMHP65, Marguin et al.2

0
; NS68,

Nakamura and Schwarz2"; OP68, Oliver and Pike4; PG67, Pao
and Griffiths13; RS63, Rodman and Smith 4 ; ZMM36, Zworykin
et al. 2.

b The region enclosed by a double line is relevant to operation
of an ideal photomultiplier.

I Low statistical accuracy.
d Dark-count limited operation.

1 1-3 stage multipliers only.
f Includes the effect of collection efficiency.
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sidered in Table I. The original photon-counting ex-
periments which investigated the photon noise involved
in the detection of coherent, or broadband thermal,
light were made by Freed and Haus,' 9 Marguin et al.,02
and Johnson et al.2 Many authors' 11,

22 23 have made
measurements on the variation of the SNR when photon
counting as the discriminator threshold is varied. The
fact that this ratio was not trivially related to the light
P(q) was, of course, due to the differing light and dark
P(q)'s. Only Papayan and Rozanov2" interpreted their
results quantitatively in terms of these distributions.
When comparing the SNR's obtained with photon
counting and dc detection, most authors 7 22 23 observed
an advantage in photon counting. However, except
in Ref. 23 quantitative interpretation is difficult. In
the strong-signal case both Nakamura and Schwarz22
and Rolfe and Moore' found no advantage in photon
counting, probably because they failed to count many
of the photomultiplier output pulses. Baum,2 4 Tull,6

and Young" have predicted the advantage of photon
counting by integration of experimental pulse-height
distributions and obtained results that tended to favor
photon counting as the multiplier tended to ideality.

In this paper we shall consider only noise-in-signal
limited operation since, as we have said, practically
ideal multipliers can be obtained having nearly identical
light- and dark-count pulse-height distributions with no
correlations between pulses. Operation of such multi-
pliers in the dark-count limited region is in principle the
same as noise-in-signal limited operation.4 In this
paper measurements of single-electron response P(q),
photon-counting distributions p(n,T), and integrated-
charge distributions P(Q,T) are interpreted in terms of
the SNR considerations first formulated by Zworykin
et al.' and Shockley and Pierce' and since expanded by
Prescott.2 ' In each case the tubes are operated under
noise-in-signal limited conditions with dark-count
rates rendered negligible by cooling. Both digital and
capacitive storage techniques are considered. The
value of the relative variance of the integrated-charge
distribution corresponds to the noise in signal-to-signal
power ratio.

Theory

Let us consider in detail the parts played by the
photomultiplier and the storage system. The optical
radiation field is detected at the photocathode by the
emission of photoelectrons corresponding to the anni-
hilation of photons. This is a Poisson process, and so,
for broadband thermal light or for coherent radiation,
these photons will have a random time distribution.' 9 -2 '
However, the multiplication process depends on a
further statistical distribution of secondary-emission
probabilities giving rise to variation in the pulse heights
observed at the anode. If the output of the multiplier
were to be standardized in a discriminator in such a
way that none of the pulses arising from photoelectrons
emitted by the photocathode was lost and none added,
then the standardized output would contain only the
original time distribution of the photoelectrons, and the
effects of varying pulse heights would have been

eliminated. The total integrated charge Q arriving
from the photomultiplier over a time T is made up of
individual pulses of varying or fixed charge q. The
relative variance of Q is then given by (see Appendix)

Var(Q) 
Q2 standarized

and

Var(Q) F I Var(q)1
n 2 onstandardized FTL q2

(1)

(2)

where ft is the photoelectron count rate, q is the charge
per pulse, and Var(x) denotes the variance of the
probability distribution of x. The relative variance of
Q, discussed here, is the reciprocal of the so-called
signal-to-noise in signal power ratio under the given
conditions of integration. From Eqs. (1) and (2) one
can see that the use of standardized pulses should lead
to a reduction in Var(Q)/Q 2 and hence in the experi-
mental time needed to achieve a certain accuracy, by a
factor [1 + Var(q)/q2]. In addition one would expect
an improvement due to the removal of any charge-
leakage effects, the rejection of pulses arising from else-
where in the dynode chain, and, to a first order, the
removal of the effects of drifts in the system gain.

In this discussion two effects have not been consid-
ered so far which have the same influence on each result.
First, the detection process at the photocathode has a
certain quantum efficiency that determines the best
achievable performance of the detector. A second
limitation is that the multiplier may fail to multiply
some of the incident photoelectrons giving a reduced
over-all efficiency for the detector. This collection
efficiency is a parameter that cannot be improved by
subsequent electronics and, again, affects equally all
techniques for using photomultipliers. The above
formulas are simply modified to take account of these
effects by using in them the observed count rate ft.

It is well known from the theory of the ratemeter" 8

(see also Whitford26) that the relative variance of the
charge in a capacitive store (of time constant r) is given
by

Var(Q)| 1

Q2 standardized 2
iT

(3)

For nonstandardized pulses this becomes (see Appendix)

Var(Q) 1 F1 + Var(q)1

Q 2 nonstandardized 2 F- L q2

(4)

Equations (3) and (4) show that the choice of the
integration time constant r determines the relative
variance of Q. To increase the signal-to-noise in signal
ratio the time constant must be increased. Obviously,
however, if the signal were changing, a large time con-
stant would introduce a distortion of the result because
of the exponential residual. Similarly, if only a limited
period were available for a measurement, the choice of
too long a time constant would prevent the output
reaching a steady state and so also give rise to distor-
tion as before. If we select a time constant giving 2%
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Table il. Relative Merits of the Different Techniques of Using
Photomultipliers

Integrated Charge Distributions
Photomultiplier

output Storage Var(Q)/Q2

Nonstandardized Capacitive, (2/fT) { 1 + [Var(q)/ql'
Standardized Capacitive, 2/uT
Nonstandardized Digital (1/lIT) 1 + [Var(q)/q]}
Standardized Digital 1/T

a The capacitive store time constant is set to be = T/4 for
2% distortion.

exponential residual, as is commonly done in the use
of the rate meter, then r = T/4. Under these con-
ditions Eqs. (3) and (4) become

of approximately 100, and almost distortion-free char-
acteristics in photon-counting applications because of
its fast risetime (2 nsec) and good overload character-
istics.5 The same final charge-sensitive amplifier,
therefore, was used to make all the measurements.
Since the standardized input with externally fixed
sample time provided the well-known photon-counting
distribution for a Poisson source, 9 this acted as a check
on the linearity and distortion of the amplifier which
was found to be better than 1%.

Two types of photomultiplier are considered here:
the ITT FW130 which has proved near ideal in our
experience, having Poisson multiplication statistics,
and the EMI 6256, the tube used by Rolfe and Moore'
to obtain results leading to conclusions with which we
do not agree.

Experimental Results

Var(Q) 2

Q staLnda.dized IT

and

Var(Q) 2 + Var(q)]
Q nonstandardized tT L q2 I

(5) Pulse-Height Distributions

Figure 2 shows a pulse-height distribution P(q),
obtained for an ITT FW130 with a cathode to dynode
1 voltage of 300 V and a dynode 1 to anode voltage of

(6)

Therefore, since the relative variance is doubled (ac-
cepting arbitrarily this level of distortion), one would
expect that capacitive storage should require an ex-
periment duration T, twice that needed with digital
storage to achieve the same accuracy. Reduction of
the capacitive time constant would reduce the distortion
due to the exponential residual, but as can be seen from
Eq. (3) and (4) this is only achieved at the expense of a
higher value of the relative variance of Q, ie, a poorer
signal-to-noise in signal ratio. These results are sum-
marized in Table III and derived in detail in the Appen-
dix. If we define photon counting as the use of stan-
dardized pulses with digital storage and current
measurement as the use of nonstandardized pulses with
some form of current meter (capacitive storage) with
the above time constant then current measurement will
require an experimental time a factor of 2 { 1 + [Var(q)/
q2]} greater than photon counting to achieve the same
accuracy.

Apparatus and Methods

To measure charge distributions from photomulti-
pliers a charge-sensitive integrating amplifier was de-
signed. Used as a charge integrator (digital storage) it
was allowed to charge up for a fixed time determined by
an external clock (Fig. 1), sampled (using the sampled
voltage analysis mode of a multichannel analyzer), and
then reset. Alternatively, it was used as a capacitive
store by introducing an internal time constant. If used
with a shorter (30-,vsec) internal time constant it
acted as a charge-sensitive pulse amplifier, in which
case a low input count rate was required to avoid pulse-
pileup effects. The amplifier input was connected
either directly to the photomultiplier anode or via a
second, wideband, amplifier and discriminator. This
second amplifier had an input impedance of 50 02, a gain

i\ | I | t~~NTEGRATINGI M .C. A.
Ia.M - - IS M LFE (S. VA.) l

L_ - - - -- - -- - -- --.11RESET SAMPLEJ

Fig. 1. Block diagram of the use of a charge-sensitive integrat-
ing amplifier to investigate the effects of pulse-height variation
and type of storage on the accuracy of integrated charge meas-

urements.

p(q)

ARB

0

b=O

3

q /q

Fig. 2. Pulse-height distribution P(q) for an ITT FW130. A
theoretical distribution based on Prescott's analysis for b = 0 is

also shown for comparison.
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1800 V. In common with Barr and Eberhardt2 7 this
cathode to dynode 1 voltage was found to give the
optimum pulse-height distribution. On standardizing
the multiplier output the total number of pulses re-
corded dropped by approximately 2%, showing that
nearly all pulses of the distribution of Fig. 2 were
counted by the discriminator. The gain of the multi-
plier was measured by finding the discriminator setting
that halved the observed count rate. The pulse shape
was determined from a sampling oscilloscope trace, and
hence the median charge per pulse could be calculated
giving the multiplier gain with an accuracy that should
be better than 10%. For the FW130 the median gain
can be calculated from the pulse-height distribution of
Fig. 2 to be about 2% less than the mean gain. This
would give a negligible error in the calculated gain per
stage. The variation of the first-stage gain with
voltage, other stages being kept at constant gain, was
found to be approximately proportional to V 7. Thus
the gain of the first stage could be corrected for the non-
uniform voltage distribution giving a value of 4.5. The
relative variance of the observed pulse-height distribu-
tion [Var(q)/q2] was found to be 0.29 yielding a b
parameter close to zero using Prescott's analysis. 2'
The theoretically predicted P(q) is also included in
Fig. 2, and, considering that the tube is not operated
with uniform gain per stage as the theory assumes, the
agreement is satisfactory. The bulk of the residual
pulses at low energy are thought to be due to elastic
primaries.9

Figure 3 shows a pulse-height distribution for an
EMI 6256 obtained with 1600 V divided according to
the manufacturer's recommendation. The over-all
gain was measured in the same way as for the FW130
yielding a value for the first-stage gain of 6.5. For this
tube the relative variance was found to be 0.44, giving a
value of 0.23 for the b parameter. Figure 3 also shows
the theoretical curve, based on Prescott's analysis, for
b = 0.2, the closest value computed, demonstrating
reasonable agreement. The curve for b = 0 is also
shown. Thus one would expect the 6256 to be noisier
than the FW130 because of the increased variance of q.
The fact that the distribution has a more pronounced
low pulse-height tail than the FW130, used at the same
mean gain, is reflected in the fact that our measurement
of the standardized count rate from the discriminator
showed that 5% of the distribution was lost, as opposed
to only 2% with the FW130.

Our distribution for the 6256 is significantly more
peaked than that obtained by Rolfe and Moore' with a
similar tube voltage. One explanation could involve
dependence on the area of photocathode illuminated
since this affects the pulse-height distribution by in-
creasing the possible dynode gain variation.9 28 In this
work we have illuminated a spot of 0.2-mm diam;
illumination of a larger area gives a significantly poorer
P(q). The area used by Rolfe and Moore is not stated.
However, this explanation is inconsistent with the re-
sults they obtained from te variation of counting rate
with discriminator threshold, which indicates a peaked
distribution. In addition, the mean pulse height for

their two measurements is in disagreement since they
found that the count rate was reduced to about 20%
of its maximum value by adjusting the threshold of the
discriminator to the mean pulse height, estimated from
their pulse-height distribution. Even for an ex-
ponential SER one would expect the count rate to be
reduced to only -35% of its maximum value under
these conditions. For distributions with any type of
peak a value nearer 50% is expected (as for the FW130).
Rolfe and Moore offered no comment on these dis-
crepancies.

Integrated Charge Distribution with Digital Storage
-the Effect of Pulse-Height Variation

The effect of variation in pulse height on the in-
tegrated charge distribution was measured using an
external clock (to control the sampling period) and
sampled voltage analysis as described previously. This
is essentially a digital storage technique corresponding
to lines 3 and 4 of Table III. Typical integrated
charge distributions for the FW130 and 6256 are in
Figs. 4 and 5, respectively. They were built up from
104 to 105 samples, and in each case would be equivalent
to taking the same number of well separated samples
from a chart recording with a time constant half the
integration time used here. The distribution for the
FW130 shows a comparatively small difference be-
tween standardized and nonstandardized inputs-as
expected for this clearly peaked distribution. From
these results, using the corrected standardized count
rate, the factors [1 + Var(q)/q 2 ] can be calculated.

p(q)

ARB
UNITS ut a \ s6.5

20-

16 ., \s Sg--b=0
1 6

b 0.2

12_

8

4 -

0 1 2 3
q

Fig. 3. Pulse-height distribution P(q) for an EMI 6256. Theo-
retical distributions for b = 0 and 0.2 are also shown for com-

parison.
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x STANDARDIZED

. NONSTANDARDIZED

n=4.77

3

Q(T)/Q(T)

Fig. 4. Typical integrated-charge distributions P(Q,T) ob-
tained using digital storage (a multichannel analyzer) for both
standardized and nonstandardized outputs from the FW130.

factors were found to be 1.30 (FW130) and 1.44 (6256).
These increased variances show the increase in experi-
mental time needed to attain the same statistical
accuracy as could be attained by the use of standardized
pulses. The fact that some pulses are lost in standard-
ization reduces this advantage slightly.

If the pulse-height distributions obtained by Rolfe
and Moore for the 6256 were correct one would expect
their SNR for nonstandardized pulses to be signifi-
cantly less than for standardized pulses. Since they do
not observe this, it must indicate either that the pulse-
height distribution is more peaked than they obtained
or that they are losing many pulses on standardization
or both.

Integrated Charge Distributions-the Effect of
Storage Technique

For this measurement the standardized output from
the FW130 was used into the amplifier which had either

EXPONENTAL S.E.R.
NONSTANDARDIZED

x STANDARDIZED

. NONSTANDARDIZED

1i = 6.68

I + Va r (q)

-2

8 -

1 6

2 3

EM 1. 6256

- p =65

x x~~~~~

F W 130

A =4.5

1 4 _

Q(T)/Q(T)

Fig. 5. Typical integrated-charge distributions P(Q,T) for the
L. 6256 for both standardized and nonstandardized outputs.

12

This experiment was repeated for a number of different
counts per sample time for each tube, and the results
are summarized graphically in Fig. 6. The ordinate
gives the factor 1 + [Var(q)/q 2 .] However, since the
gains are not the same for the two photomultipliers, the
expected value of this factor would differ, even if both
tubes had a P(q) corresponding to Poisson multiplica-
tion statistics (b = 0). In Fig. 6, therefore different
scales have been used so that the ideal case is at the
same reference level for each photomultiplier tube. In
each case the standardized photon-counting distribu-
tion gives a factor of 1 as expected; departure from this
value would indicate correlations between the output
pulses. For the nonstandardized distributions the

_ O _ 0 0_

IDEAL S.E.R. NONSTANDARDIZED 0

x 0 x

PHOTON COUNTING

0 4 8 12
COUNTS PER SAMPLE TIME, IT

2 0

_18

I 6

1 4

1 2

1.0

16 20

Fig. 6. The dependence of 1 + Var (q)/q-2 on output standard-
ization for both the FW130 and the 6256 with different numbers
of counts per sample time. The high and low sets of points for
each tube are for nonstandardized and standardized pulses,
respectively. The ordinate scales are such that the ideal per-

formance lies at the same reference level.
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for low light levels, however, the same factor can be-
come important. 4

Appendix

Digital Storage

Consider the total charge Q arriving from a train of
infinitely short photomultiplier output pulses inte-
grated for a time T. The probability of Q is given by

COUNTS PER SAMPLE TIME , AT

Fig. 7. The dependence of the relative variance of the in-
tegrated-charge distributions for a standardized output on the
number of counts per sample time. The effect of the different
storage techniques is shown. The continuous line is the theo-

retical prediction; the points are experimental.

a long internal time constant (capacitive storage) or an
external reset (digital storage). The integrated-charge
distributions were measured using as previously sam-
pled voltage analysis. Since it was necessary to de-
termine the signal in a time T the internal time con-
stant was set at = T/4, giving 2% distortion to the
result, and samples were taken at intervals of T. As
explained above, if less distortion had been required a
smaller internal time constant could have been used at
the expense of worse statistical accuracy. The results
of a series of these measurements with different num-
bers of counts per sample time for capacitive and
digital storage are in Fig. 7. It can be seen that the use
of a capacitive store under these conditions does require
double the integration time to achieve the desired
result.

Conclusions

It has been shown experimentally that the relative
variances of the integrated charge distributions are as
predicted by the theory. Thus if we consider current
measurements with the FW130 into a capacitive store,
this will require a total length of experiment a factor of
2.6 longer than that required for photon counting into a
digital store. This is the best performance theoretically
possible with the given first-stage gain of 4.5. For the
6256 this factor rises slightly to become 2.9 with a first-
stage gain of 6.5. With this first-stage gain the mini-
mum theoretical value would be 2.4. The increase over
this value reflects the nonzero b for this tube (b =
0.23).

The major contribution to the difference in experi-
ment times, therefore, comes from the contrast be-
tween capacitive and digital stores (here a factor of 2).
In the extreme case of a very poor multiplier having an
exponential P(q) the effect of standardization would
also contribute a factor of 2. For each of the two
tubes considered here, however, this latter contribution
was much smaller. The additional integrating time
needed in these cases may not seem significant where
high light fluxes entail only short experiment times;

P(Q) = E P(Q~n)p(n,T), (Al)

i.e., it is made up of the product of the probability of n
pulses having a total charge Q with the probability of n
pulses arriving in time T summed over all values of n.

The probability of n pulses having a total charge Q
is the n-fold convolution of the individual charge
probability distribution Pq(q), i.e.,

P(QIn) = P,(q)*P2(q2)*p(q3)..

Hence the moment generating function for P(Q) is

(e-8Q) = f e--QP(Q)dQ

= E p(n,T)P,(s),

(A2)

(A3)

(A4)

where P(s) is the Laplace transform of Pa(q).
For broadband thermal, or coherent light, substitu-

tion for p (n, T) gives

(e-sQ) = ( pn, ! e (Tp ()

where n
Since

(A5)

is the mean number of counts per second.

dm ((Qm) = ( )m -(e -Q)I
dsm 1 s= 

we have

(Q2) = £ 0Mne)n n(n , _l)P - 2(s) ds P(S)

*nPf - (s)(d2/ds2)P(s)} = 0

=E (iT)e-(nT) n(n - 1) (q2) + n(q2)1
n n!

= fiIT2(q)2 + RiT(q)2'

Similarly,

(Q) = fi(q)T,

and so

Var(Q)/Q2 = (IT)[l + Var(q)/q2].

(A6)

(A7)

(A8)

(A9)

(A10)

(All)

Capacitive Storage
If we consider capacitive storage (time constant T)

such that the charge developed decays away then the
charge Q measured at a time t is given by

Qi = Yiqi exp(-ti/T), (A12)
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where Yj equals if a pulse were present or 0 if a pulse
were absent during a sample at time ti, of duration At
sufficiently small for not more than one pulse to occur
during At, q is the charge of a pulse arriving in this
sample time.

The probability of obtaining no pulses during this
sample is

Pi(0) = 1 - rAt, (A13)

where r is the mean count rate, and the probability of
obtaining charge Qf is given by

Pj(Qj) = rAt exp(ti/r)P[Qi exp(ti/r)]. (A14)

The factor exp(ti/r) is required for correct normaliza-
tion. Since the probability of obtaining a charge Q is,
as before, the convolution of the individual charge
probabilities, the moment generating function is

(e'Q) = P(s) X P2(s) X ... (A15)

where

Pi(s) = f exp - (sQ)Pi(Qi)dQi (A16)

= 1 - rAt + rAt exp (-sQi + tT)P[Qiexp(tjfr)jdQj. (A17)

Putting

Qj' = Qi exp (ti/r) (A18)

and substituting in Eq. (A17) we have, talking the
limit as At -> 0,

(e',Q) = exp(-rf+ {1 - fexp[-sQexp(-t/)]

X P(Q)dQ}dt) (A19)

= exp[-rt(s(q) - (s2/2.2 !)(q')

+ (s'/3.3!)(q')...)]. (A20)

Thus, using Eq. (A6),

(Q2) = r (q2) + r'T'(q)2
2

and

(Q)2 = r27-2(q)2.

(A21)

4. C. J. Oliver and E. R. Pike, J. Phys. DI, 1459 (1968).

5. R. Foord, R. Jones, C. J. Oliver, and E. R. Pike, Appl. Opt. 8,
1975 (1969).

6. J. Sharpe, EMI Rept., Ref. No. R/PO21 (EMI, Hayes,
Mx., U.K., 1966).

7. A. T. Young, Rev. Sci. Instrum. 37, 1472 (1966).

8. P. B. Coates, J. Phys. D3, 1290 (1970).

9. C. J. Oliver and E. R. Pike, J. Phys. D3, L73 (1970).

10. W. Schottky, Ann. Phys. 57, 541 (1918).

11. A. T. Young, Appl. Opt. 8, 2431 (1969).

12. L. Mandel, Proc. Phys. Soc. 72, 1037 (1958).

13. Y. H. Pao and J. E. Griffiths, J. Chem. Phys. 46,'1671 (1967).

14. J. P. Rodman and H. J. Smith, Appl. Opt. 2, 181 (1963).

15. M. Gadsden, Appl. Opt. 4, 1446 (1965).

16. R. G. Tull, Appl. Opt. 7, 2033 (1968).

17. R. R. Alfano and N. Ockman, J. Opt. Soc. Amer. 58, 90
(1968).

18. D. Taylor, The Measurement of Radio Isotopes (Methuen,
London, 1951).

19. C. Freed and H. A. Haus in Proceedings of the International
Conference on the Physics of Quantum Electronics, Puerto Rico,
P. L. Kelley, B. Lax, and P. E. Tannenwald, Eds. (McGraw-
Hill, New York, 1966), p. 715.

20. J. Marguin, R. Marcy, G. Hepner, and G. Pircher, Compt.
Rend. 260, 1361 (1965).

21. F. A. Johnson, T. P. McLean, and E. R. Pike, in Proceedings
of the International Conference on the Physics of Quantum
Electronics, Puerto Rico, P. L. Kelley, B. Lax, and P. E.
Tannenwald, Eds. (McGraw-Hill, New York, 1966), p. 706.

22. J. K. Nakamura and S. E. Schwarz, Appl. Opt. 7, 1073 (1968).

(A22) 23. G. V. Papayan and Y. M. Rozanov, Sov. J. Opt. Technol. 36,
(A22) 736 (1969).

Thus

Var(Q)/Q2 = 12rr[1 + Var(q)/q2]. (A23)

A derivation considering only standardized pulses is
given in Ref. 18, where the theory of the ratemeter is
discussed.
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